
Number 7 - July 2021 Problems

August 18, 2021

Problems

Problem 35A. Proposed by DC

In trapezoid ABCD, the bases are AB=7 cm and CD=3 cm. The circle with
the origin at A and radius AD intersects diagonal AC at M and N. Calculate
the value of the product CM × CN .

Problem 42A. Proposed by Vedaant Srivastava

Given positive reals a, b, c, prove that

a(a3 + 1)

2b+ 6c
+
b(b3 + 1)

2c+ 6a
+
c(c3 + 1)

2a+ 6b
≥ 1

8
(a3 + b3 + c3 + 3)

Solution Problem 42A

From Cauchy-Schwartz, we have that(∑
cyc

a4

2b+ 6c

)(∑
cyc

a2(2b+ 6c)

)
≥ (a3 + b3 + c3)2

This implies that(∑
cyc

a4

2b+ 6c

)
≥ (a3 + b3 + c3)2∑

cyc a
2(2b+ 6c)

≥ 1

8
(a3 + b3 + c3) (1)

Where the last inequality follows as 8(a3 + b3 + c3) ≥
∑

cyc a
2(2b + 6c) by

standard AM-GM / Muirhead.

Again from Cauchy-Schwartz, we have that(∑
cyc

a

2b+ 6c

)(∑
cyc

a(2b+ 6c)

)
≥ (a+ b+ c)2



August 18, 2021 Proposed Math Problems Page 2

This implies that (∑
cyc

a

2b+ 6c

)
≥ (a+ b+ c)2∑

cyc a(2b+ 6c)
≥ 3

8
(2)

Where the last inequality follows as 8(a+b+c)2 ≥ 3
∑

cyc a(2b+6c) by standard
AM-GM / Muirhead.

Adding (1) and (2) yields the desired result.

Problem 43A. Proposed by Alexandru Benescu

Let ABCDA′B′C ′D′ be a cube, R be the midpoint of BB′, and S be the
midpoint of AD. Point T is on C ′D′ such that C′T

D′T = 2. Find cos](SC, TR).

Solution Problem 43A

Let AB = 6x. Thus, TC ′ = 4x and TD′ = 2x. Let T ′ be a point on CD such
that TT ′ ⊥ CD. Thus, T ′C = 4x and T ′D = 2x. Let P be the midpoint of
TT ′ and let Q be an extension of DA such that QA = AS (see figure below).

Since TP = RB = 3x and TP ‖ CC ′ ‖ BR, we know that RBPT is a
parallelogram. Similarly, since BC = QS = 6x and BC ‖ QS, we see that
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BQSC is a parallelogram. Therefore, TR ‖ PB and SC ‖ QB. Consequently,
cos(](SC, TR)) = cos(]PBQ).

From Pythagorean Theorem in 4BCT ′, we have that

(BT ′)2 = (CT ′)2 + (BC)2 = 16x2 + 36x2 = 52x2.

Using Pythagorean Theorem in 4BT ′P , we get that

BP =
√

(PT ′)2 + (BT ′)2 =
√

9x2 + 52x2 = x
√

61.

Furthermore, BQ =
√

(AQ)2 + (AB)2 =
√

9x2 + 36x2 = x
√

45.

Using Pythagorean Theorem in 4QDT ′, we get (QT ′)2 = (QD)2 + (DT ′)2 =
81x2 + 4x2 = 85x2. Substituting this into Pythagorean Theorem for 4PT ′Q,
we get

PQ2 = (PT ′)2 + (QT ′)2 = 9x2 + 85x2 = 94x2.

From the Law of Cosines in 4BPQ, we have that

PQ2 = PB2 +QB2 − 2PB ·QB · cos(](PBQ)).

Thus,

cos(](PBQ)) =
PB2 +QB2 − PQ2

2PB ·QB

=
61x2 + 45x2 − 94x2

2 · x
√

61 · x
√

45

=
12

6
√

305

=
2√
305

=
2
√

305

305
.

Problem 48A. Proposed by Vedaant Srivastava

Let G be the set of all lattice points (x, y) on the Cartesian plane where 0 ≤
x, y ≤ 2021. Suppose that there are 2022 roadblocks positioned at points in G
such that no two roadblocks have the same x or y coordinate. Anna starts at
the point (0, 0), attempting to reach the point (2021, 2021) through a sequence
of moves. In each move, she moves one unit up, down, left, or right, such that
she always remains in G. Given that Anna cannot visit a lattice point which
is occupied by a roadblock, determine all configurations of the roadblocks in
which Anna is unable to reach her destination.
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Solution Problem 48A

We call a diagonal block a set of roadblocks positioned at (0, j), (1, j−1), . . . , (j, 0)
or (2021, j), (2020, j + 1), . . . (j, 2021) for some j ∈ Z | 0 ≤ j ≤ 2021.
Then, the following claim finishes the problem:

Claim: Anna is unable to reach her destination if and only if a diagonal block
exists.

Proof. It can be easily verified that if a diagonal block exists, then Anna is
unable to reach her destination.

We now prove that this is a necessary condition. Suppose that Anna is unable
to reach her destination. Let S be the fixed set of points which Anna is able
to reach. Consider the set of points on the boundary of S. Clearly, any two
adjacent points on the boundary of S are at most 1 unit apart in the x-direction
and y-direction. Otherwise, more points can be added to S, contradiction.

Furthermore, we have that at least one of the points on the boundary of S
lies on the border of G, otherwise, S can be extended along the border of G,
contradiction.

This implies that some point (p, q) on the boundary of G must be a roadblock.
Then, as no two roadblocks have the same x or y coordinate and adjacent
roadblocks must be at most one unit in each direction apart, the next roadblock
must have the coordinates (p + dx, q + dy), where dx, dy = ±1. Similarly, the
next roadblocks after that must have the coordinates (p + 2dx, q + 2dy), (p +
3dx, q + 3dy), . . . and so on. This forms a diagonal block, as desired.

Problem 50A. Proposed by Nicholas Sullivan

Let O be the intersection point of the two diagonals of non-degenerate quadri-
lateral ABCD. Next, let E, F , G and H be the midpoints of AB, BC, CD
and DA respectively. If EG and FH intersect at O, show that ABCD is a
parallelogram.

Solution Problem 50A

(Solution 1) This can be shown using the vector representation. First, define

~a = OA, ~b = OB, ~c = OC and ~d = OD. Thus, we can represent the midpoints
as OE = 1

2 (~a+~b), OF = 1
2 (~b+ ~c), and so on.

Since O is the intersection of the diagonals of ABCD, we know that ~a = k1~c
and ~b = k2~d for some scalars k1, k2. Similarly, since O is the intersection of EG
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and FH, we can write that:

1

2
(~a+~b) =

k3
2

(~c+ ~d)

1

2
(~b+ ~c) =

k4
2

(~d+ ~a),

for some scalars k3 and k4. Plugging in the expressions for ~a and ~b, we have:

k1~c+ k2 ~d = k3(~c+ ~d)

k2 ~d+ ~c = k4(~d+ k1~c).

If ~c and ~d are not linearly independent, then they can be written as scalar
multiples of each other, and the vertices of the quadrilateral become collinear.
Since ABCD is non-degenerate, then ~c and ~d must be linearly independent.

Thus, the above equations can only be satisfied if:

k1 = k3

k2 = k3

k2 = k4

1 = k4k1.

Thus, k1 = k2 = k3 = k4 = ±1. If we take the positive sign, then ~a = ~c
and ~b = ~d, causing ABCD to be degenerate. Thus, we must take ~a = −~c and
~b = −~d.

As a result, ~a −~b = ~d − ~c and ~a − ~d = ~b − ~c, so AB ‖ DC and AD ‖ BC.
Thus, ABCD is a parallelogram.

(Solution 2) First, we note that O is the centroid of ABCD, with EG and
FH both dividing the quadrilateral into two equal areas. That is, S(ABFH) =
S(DCFH) and S(ADGE) = S(BCGE).

Next, consider triangle ABO. Since OE is a median, it divides the triangle
into two equal areas, S(AEO) = S(BEO). Let this be labelled s1. Similarly,
let s2 = S(BFO) = S(CFO), s3 = S(CGO) = S(DGO) and s4 = S(DHO) =
S(AHO).

As a result, we know that:

S(ABFH) = S(DCFH)

2s1 + s2 + s4 = 2s3 + s2 + s4

S(ADGE) = S(BCGE)

2s4 + s1 + s3 = 2s2 + s1 + s3.

Thus, s1 = s3 and s2 = s4.
Since O is the centroid, then it is also the midpoint of EG and FH, implying

that OE = OG and OF = OH.
Next, consider triangles AEO and CGO. Since s1 = s3, they have equal

areas, and by opposite angles, m(]AOE) = m(]COG). Let this angle be
denoted α.
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Since their areas are equal, and OE = OG:

S(AEO) = S(CGO)

1

2
OA ·OE sinα =

1

2
OC ·OG sinα

OA = OC.

Thus, O is the midpoint of AC, and by a similar argument, O is the midpoint
of BD.

By SAS, trianglesABO and CDO are thus congruent (OA = OC, m(]AOB) =
m(]COD), OB = OD), implying that AB = CD. Similarly, ADO and CBO
are congruent, implying that AD = CB.

Since AB = CD and AD = CB, quadrilateral ABCD is a parallelogram.

Problem 53A. Proposed by Nikola Milijevic

The positive integers a1, a2, . . . , an are not greater than 2021, with the property
that lcm(ai, aj) > 2021 for all i, j, i 6= j. Show that:

n∑
i=1

1

ai
< 2

Problem 54A. Proposed by Cosmina Ghitescu

Consider a pointM in the interior of equilateral triangleABC such thatm(]MAC) =
45◦ and m(]MCB) = 30◦. Take N ∈ (AB) such that m(]NMC) = 120◦. If
AM ∩ CB = {D}, find the value of the ratio MN

BD .

Solution Problem 54A

We will prove that MN = BD.

From exterior angle theorem in4AMC, we have thatm(]CMD) = m(]MAC)+
m(]ACM) = 45◦ + 30◦ = 75◦. Via the sum of the angles in a triangle for
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4ACD, we get that m(]CDM) = 75◦. Thus, m(]CMD) = m(]CDM) =
75◦ ⇒4MDC isosceles. ⇒MC = DC.

We have that MN +MC = MN +DC. Let us prove that MN +MC = BC.
Extend CM to E, where EM = MN . So, MN + MC = EM + MC = EC.
Since m(]NME) = 180◦ − m(]NMC) = 180◦ − 120◦ = 60◦, we have that
4MNE is equilateral.

Consider AB ∩ CE = {P}. Since m(]PAC) = 60◦ and m(]ACP ) = 30◦, we
know that m(]APC) = 90◦ ⇒ NP ⊥ EM . Because 4MNE is equilateral, P
must be the midpoint of EM .

Since AP ⊥ EM and P is the midpoint of EM , we have that 4AEM isosce-
les. Thus, AP is the angle bisector of ]EAM , meaning that m(]EAP ) =
m(]PAM) = m(]PAC) − m(]MAC) = 15◦. Therefore, m(]EAC) = 75◦.
Because m(]ECA) = 30◦, we also have that m(]AEC) = 75◦ via the sum of
the angles in 4AEC ⇒ EC = AC.

We are given that 4ABC is equilateral. Thus, EC = AC = BC.

Consequently, MN + MC = BC = BD + DC, meaning that MN = BD and
MN
BD = 1.

Problem 55A. Proposed by Eliza Andreea Radu

Consider the triangle ABC with AB = 4 cm, BC = 6 cm and AC = 5 cm.
Take M ∈ (AB) and N ∈ (AC) such that cos(]AMN) = 3

4 . The feet of
the perpendiculars drawn from B to MN , NC, and MC are P , Q, and R,
respectively. What does P,Q,R form?

Problem 56A. Proposed by Cosmina Ghitescu

Let ABCDA′B′C ′D′ be a cube with M ∈ (BC) and N ∈ (DD′) such that
CM
MB = D′N

ND = k. If AC ∩DM = {R} and CN ∩DC ′ = {T}, find the value of
k such that RT ||(ABC ′).

Solution Problem 56A

The segment RT must lie in a plane parallel to (ABC ′).

Let S ∈ (BC) such that RS ‖ AB. Since RT ‖ (ABC ′) and RS ‖ AB, we have
that (RST ) ‖ (ABC ′).

Let P ∈ (CC ′) such that TP ‖ DC. Since RT ‖ (ABC ′) and TP ‖ DC ‖ AB,
we have that (PTR) ‖ (ABC ′).

Therefore, (RTPS) ‖ (ABC ′), meaning that PS ‖ BC ′.
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By Thales in 4BCC ′, we have that

C ′P

PC
=
BS

SC
. (1)

Similarly, Thales in 4CDC ′ yields

C ′P

PC
=
C ′T

TD
.

Since 4C ′TC ∼ 4DTN via AA similarity, we have that

C ′T

TD
=
C ′C

ND
.

Thus, we get that
C ′P

PC
=
C ′C

ND
.

We are given that
D′N

ND
= k, which yields

D′N +ND

ND
=
DD′

ND
= k + 1.

Because DD′ = CC ′, we have that
CC ′

ND
= k + 1.

Therefore,

C ′P

PC
= k + 1. (2)
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By Thales in 4ABC, we have that

BS

SC
=
AR

RC
.

We also have that 4ADR ∼ 4CMR, giving us that

AR

RC
=

AD

CM
.

Thus, we can conclude that
BS

SC
=

AD

CM
.

We are given that
CM

MB
= k, meaning that

CM

CB
=

k

k + 1
.

Taking the reciprocal and using the fact that CB = AD, we get

AD

CM
=
k + 1

k
.

Thus, we have that

BS

SC
=
k + 1

k
. (3)

From (2):
C ′P

PC
= k + 1.

From (3):
BS

SC
=
k + 1

k
.

From (1):
C ′P

PC
=
BS

SC
, meaning that k + 1 =

k + 1

k
.

Therefore, k = 1, making M and N the midpoints of BC and DD′, respectively.

Problem 57A. Proposed by Eliza Andreea Radu

Consider the tetrahedron V ABC with a volume equal to 4 such thatm(]ACB) =

45◦ and AC+3
√
2(BC+V B)√
18

= 6. Find the distance from B to the plane (V AC).

Problem 58A. Proposed by Aida Dragomirescu

Find a, b, c ∈ R with the property that (3a− 10)
2

+ (3b− 10)
2

+ (3c− 10)
2

+
150 ≤ 3 (ab+ ac+ bc).
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Solution Problem 58A

Expanding the left side of the inequality, we get

9
(
a2 + b2 + c2

)
− 60 (a+ b+ c) + 450 ≤ 3 (ab+ ac+ bc) .

Dividing both sides by 3, we get

3
(
a2 + b2 + c2

)
− 20 (a+ b+ c) + 150 ≤ ab+ ac+ bc.

Multiplying by 2 and then rearranging, we have

6
(
a2 + b2 + c2

)
− 40 (a+ b+ c) + 300− 2 (ab+ ac+ bc) ≤ 0.

We now work to form squares:

4
(
a2 + b2 + c2

)
− 40 (a+ b+ c) + 300 + 2

(
a2 + b2 + c2

)
− 2 (ab+ ac+ bc) ≤ 0

m(
4a2 − 40a+ 100

)
+
(
4b2 − 40b+ 100

)
+
(
4c2 − 40c+ 100

)
+(a− b)2+(b− c)2+(c− a)

2 ≤ 0

m

(2a− 10)
2

+ (2b− 10)
2

+ (2c− 10)
2

+ (a− b)2 + (b− c)2 + (c− a)
2 ≤ 0.

By Trivial Inequality, we know that

(2a− 10)
2

+ (2b− 10)
2

+ (2c− 10)
2

+ (a− b)2 + (b− c)2 + (c− a)
2

= 0,

which gives us a = b = c = 10
2 = 5.

Problem 59A. Proposed by Irina Daria Avram Popa

Find the area of a triangle with sides a, b, c knowing that

(3a− b+ c)
2

+ (3b− c+ a)
2

+ (3c− a+ b)
2

+
1

3
≤ 2 (a+ b+ c) .

Solution Problem 59A

Let:

x = 3a− b+ c,

y = 3b− c+ a,

z = 3c− a+ b.

Adding up the three equations, we get that

x+ y + z = (3a− b+ c) + (3b− c+ a) + (3c− a+ b) = 3 (a+ b+ c) .
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We are given that

x2 + y2 + z2 +
1

3
≤ 2

3
(x+ y + z) .

Completing the square, our inequality becomes(
x2 − 2x

3
+

1

9

)
+

(
y2 − 2y

3
+

1

9

)
+

(
z2 − 2z

3
+

1

9

)
≤ 0,

⇓(
x− 1

3

)2

+

(
y − 1

3

)2

+

(
z − 1

3

)2

≤ 0.

By Trivial Inequality, we know that

(
x− 1

3

)2

+

(
y − 1

3

)2

+

(
z − 1

3

)2

= 0.

Thus, x = y = z =
1

3
.

We now have that: 

3a− b+ c =
1

3
,

3b− c+ a =
1

3
,

3c− a+ b =
1

3
.

(1)

(2)

(3)

From (1) + (2) : 4a+ 2b =
2

3
⇒ b =

1

3
− 2a. (4)

From (1) + (3) : 2a+ 4c =
2

3
⇒ c =

1

6
− a

2
. (5)

Substituting (4) and (5) into (3), we get

3

(
1

6
− a

2

)
− a+

(
1

3
− 2a

)
=

1

3

⇓
1

2
− 3a

2
+

1

3
− 3a =

1

3

⇓
1

2
= 3a+

3a

2

⇓

1 = 9a.

Thus, a =
1

9
.
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We therefore have that

b =
1

3
− 2a =

1

3
− 2

9
=

1

9
.

In addition, we get that

c =
1

6
− a

2
=

1

6
− 1

18
=

2

18
=

1

9
.

Since a = b = c =
1

9
, we know that 4ABC is equilateral.

We can now calculate the area of 4ABC:

A =
a2
√

3

4
=

(
1

9

)2

·
√

3

4
=

√
3

81
· 1

4
=

√
3

324
.

Problem 60A. Proposed by Daniel Alexandru Guba

If a, b, c ∈ [5,∞), prove that
a+ b

ab+ 4c+ 15
+

a+ c

ac+ 4b+ 15
+

b+ c

bc+ 4a+ 15
≤ 1

2
.

Solution Problem 60A

Since a ≥ 5 and b ≥ 5, we have that (a− 4)(b− 4) ≥ 1⇒ ab− 4a− 4b+ 16 ≥ 1.
Rearranging and adding 4a + 4b + 4c − 1 both both sides of the inequality, we
get

ab+ 4c+ 15 ≥ 4a+ 4b+ 4c.

Taking their reciprocals and multiplying both sides of the inequality by a + b
gives us

a+ b

ab+ 4c+ 15
≤ a+ b

4 (a+ b+ c)
. (1)

Similarly,

a+ c

ac+ 4b+ 15
≤ a+ c

4 (a+ b+ c)
, (2)

b+ c

bc+ 4a+ 15
≤ b+ c

4 (a+ b+ c)
. (3)

Calculating (1)+(2)+(3), we get

a+ b

ab+ 4c+ 15
+

a+ c

ac+ 4b+ 15
+

b+ c

bc+ 4a+ 15
≤ 2 (a+ b+ c)

4 (a+ b+ c)
=

1

2
.

The equality case occurs when a = b = c = 5, which gives us

a+ b

ab+ 4c+ 15
+

a+ c

ac+ 4b+ 15
+

b+ c

bc+ 4a+ 15
=

10

25 + 20 + 15
· 3 =

30

60
=

1

2
.
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Problem 61A. Proposed by Gabriel Crisan

Let M be a point in the interior of triangle ABC such that angles ABM and
ACM are congruent. From M , build MP perpendicular to side AB, where
P ∈ AB, and build MQ perpendicular to side AC, where Q ∈ AC. If S and K
are the midpoints of BC and PQ, respectively, prove that SK is perpendicular
to PQ.

Solution Problem 61A

Let R be the midpoint of BM and T be the midpoint of CM . Therefore, RS
and TS are midlines in4MBC. Thus, RS ‖MT and TS ‖MR. Consequently,
MRST is a parallelogram and m(]MRS) = m(]MTS) = y (see figure). In
addition, RS = MC

2 and ST = MB
2 .

In right triangle MPB, PR is the median and BR = RM = PR. Thus, PR =
MB
2 . Similarly, QT is a median in right triangle MQC, which gives us that

QT = MC
2 . From the above relationships we can conclude that RS = MT = QT

and PR = RM = ST . (1)

Let m(]ABM) = m(]ACM) = x. From PR = BR = BM
2 , 4RPB is isosceles

and m(]BPR) = m(]RBP ) = x. By Exterior Angle Theorem, we have that
m(]MRP ) = 2x. Similarly, m(]MTQ) = 2x via Exterior Angle Theorem for
triangle QTC.

We thus have that

m(]PRS) = m(]MRP ) +m(]MRS) = 2x+ y,

m(]QTS) = m(]MTQ) +m(]MTS) = 2x+ y.

From the above relationships, m(]PRS) = m(]QTS). (2)

From (1) and (2), we can conclude that 4RPS ≡ 4TSQ by SAS congruence.
Therefore, PS = SQ, meaning that 4SPQ is isosceles. Since SK is the median
of isosceles triangle SPQ, it must also be the altitude. Hence, SK ⊥ PQ.
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Problem 62A. Proposed by Andrei Croitoru

Let a1, a2 . . .an be a sequence and n ∈ N. Knowing that a1 = 14 and

an+1 =
(n+ 3) · an + 26

n+ 1
∀n ≥ 1,

find all numbers n such that an ∈ N.

Solution Problem 62A

We define a new sequence where bn = an + 13. This means that an = bn − 13.

Thus,
bn+1 = an+1 + 13.

Substituting the recurrence for an+1, we get

bn+1 =
(n+ 3) · an + 26

n+ 1
+ 13.

Substituting an = bn − 13 into the equation, we have

bn+1 =
(n+ 3) · (bn − 13) + 26 + 13 · (n+ 1)

n+ 1
.

Multiplying both sides by n+ 1 and distributing gives us

(n+ 1) · bn+1 = (n+ 3) · bn − (n+ 3) · 13 + 26 + 13 · (n+ 1).

This becomes (n+ 1) · bn+1 = (n+ 3) · bn. Rearranging the equation gives us

bn+1 =
n+ 3

n+ 1
· bn.

Writing out the first few terms, we get

b1 = an + 13 = 27,

b2 =
4

2
· b1,

b3 =
5

3
· b2,

b4 =
6

4
· b3.
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Multiplying the terms in the sequence, we have

bn+1 =
4

2
·

5

3
·

6

4
· ... ·

n+ 3

n+ 1
· b1.

The sequence telescopes and we get

bn+1 =
(n+ 2)(n+ 3)

2 · 3
· b1.

This means that

bn =
(n+ 1)(n+ 2)

2 · 3
· 27 =

(n+ 1)(n+ 2)

2
· 9.

Since n+1 and n+2 are consecutive integers, we know that their product must
be even. Thus, bn is always an integer. In addition, we notice that bn increases
as n increases.

Because an = bn − 13, we see that a1, a2 . . .an must be an increasing integer
sequence. Since a1 = 14, we know that an ∈ N for all n ≥ 1.

Problem 63A. Proposed by Eliza Andreea Radu

Prove that 77
2021

+ 1 and 77
2024

+ 50 are coprime.

Solution Problem 63A

Assume that the given numbers are not coprime.

For simplicity, we let x = 77
2021

. Our numbers are now x+ 1 and x343 + 50.

Let d = gcd(77
2021

+ 1, 77
2024

+ 50) = gcd(x+ 1, x343 + 50). Thus, d | (x343 + 50)
and d | (x+ 1).

Because x343 + 1 = (x+ 1)(x342−x341 + ...−x+ 1), we have that d | (x343 + 1).
Consequently,

d | [(x343 + 50)− (x343 + 1)]⇔ d | 49.

Therefore, d ∈ {1, 7, 49}. Since we assumed that d 6= 1, we see that it must

be a multiple of 7. However, 77
2021

+ 1 and 77
2024

+ 50 are not divisible by 7,
contradiction. Thus, the assumption is false and the numbers are coprime.

Problem 64A. Proposed by Aida Dragomirescu

Solve in R the following system

 x4 + 256 = 4y3 + 64z
y4 + 256 = 4z3 + 64x
z4 + 256 = 4x3 + 64y
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Solution Problem 64A

The sum of the three relationships is: x4 + y4 + z4 + 3 · 256 = 4(x3 + y3 + z3) +
64(x+ y + z). Rearranging, we get

x4 + y4 + z4 + 3 · 256− 4(x3 + y3 + z3)− 64(x+ y + z) = 0, (1)

which is equivalent to

(x4 − 4x3 − 64x+ 256) + (y4 − 4y3 − 64y + 256) + (z4 − 4z3 − 64z + 256) = 0.

Let f : R −→ R and f(x) = x4 − 4x3 − 64x+ 256.

Our equation from (1) can be rewritten as

f(x) + f(y) + f(z) = 0. (2)

Factoring f(x), we get

f(x) = x4 − 4x3 − 64x+ 256

= x3(x− 4)− 64(x− 4)

= (x− 4)(x3 − 64)

= (x− 4)(x− 4)(x2 − 4x+ 16)

= (x− 4)2
[
(x2 − 4x+ 4) + 12

]
= (x− 4)2

[
(x+ 2)2 + 12

]
.

Observation (using Trivial Inequality):

f(x) = (x− 4)2︸ ︷︷ ︸
≥0

[
(x− 2)2 + 12

]︸ ︷︷ ︸
>0

⇒ f(x) ≥ 0.

We see that f(x) = 0 when x = 4.

Recalling (2), we see that f(x) + f(y) + f(z) = 0

m
(x− 4)2

[
(x− 2)2 + 12

]
= 0

(y − 4)2
[
(y − 2)2 + 12

]
= 0

(z − 4)2
[
(z − 2)2 + 12

]
= 0

Thus, x = y = z = 4.

Verification:
44 + 256 = 4 · 43 + 64 · 4.
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Problem 65A. Proposed by Daisy Sheng

Regular hexagon ABCDEF , with vertices labeled in a counterclockwise order,
has coordinates A(4 +

√
3, 2) and B(8 +

√
3, 4). Diagonal CF is extended until

it intersects the y-axis at M . Find the area of triangle BAM .

Solution Problem 65A

We are given that ABCDEF is a regular hexagon. Thus, each interior angle
must be (

180 · (6− 2)

6

)◦
= 120◦.

Therefore, m(]BAF ) = 120◦.

We know from the properties of a hexagon that CF ‖ AB. Thus, the slope of
the line through CF must equal the slope of the line through AB. We see that

mAB =
YB − YA
XB −XA

=
4− 2

(8 +
√

3)− (4 +
√

3)
=

2

4
=

1

2
.

In order to get the coordinates of M , we must get the equation of CF . We shall
use the complex plane to help us find F . We have that B = (8 +

√
3) + 4i and

A = (4 +
√

3) + 2i. In order to rotate B around A in a 120◦ angle, we must
translate A to the origin and then apply cis.
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We let A′, B′, and F ′ be the translated versions of A,B and F . We have that
A′ = 0, B′ = (8 +

√
3)− (4 +

√
3) + 4i− 2i = 4 + 2i, and F ′ = (XF − 4−

√
3) +

(YF − 2)i. Applying cis, we have that

F ′ = B′cis120◦

= (4 + 2i)(cos 120◦ + i sin 120◦)

= (4 + 2i)

(
−1

2
+ i

√
3

2

)
= −2 + i · 2

√
3− i−

√
3

= (−2−
√

3) + (2
√

3− 1)i.

We can now find XF and YF , the original coordinates of the point F . We have
that

XF − 4−
√

3 = −2−
√

3,

giving us that XF = 2. We also have that

YF − 2 = 2
√

3− 1,

which simplifies to YF = 2
√

3 + 1. Therefore, F (2, 2
√

3 + 1).

With the coordinates of F and mCF = mAB = 1
2 , we can now get the equation

of CF . The general equation is y = 1
2x+ b. Plugging F in, we get

YF =
1

2
XF + b,

which gives us

2
√

3 + 1 =
1

2
· 2 + b.

Solving for b quickly yields b = 2
√

3. Because M is the y-intercept of CF ,
therefore M(0, 2

√
3).

Our coordinates for triangle BAM are thus A(4 +
√

3, 2), B(8 +
√

3, 4), and
M(0, 2

√
3).

I will now present two possible methods to finish the problem.

Solution 1 - Shoelace Theorem for Triangle BAM

We have that the area of BAM is

A =
1

2
|(4 +

√
3) · 4 + (8 +

√
3) · 2

√
3 + 0 · 2− 2 · (8 +

√
3)− 4 · 0− 2

√
3 · (4 +

√
3)|

=
1

2
|16 + 4

√
3 + 16

√
3 + 6− 16− 2

√
3− 8

√
3− 6|

=
1

2
|10
√

3|

= 5
√

3.
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Therefore, the area of BAM is 5
√

3.

Solution 2 - Subtracting Areas from a Rectangle

We see that the area of the large rectangle is (8 +
√

3) · 2
√

3 = 16
√

3 + 6. The
area of 1, a trapezoid, is

2 + 2
√

3

2
· (4 +

√
3) = (1 +

√
3)(4 +

√
3) = 4 +

√
3 + 4

√
3 + 3 = 7 + 5

√
3.

The area of 2, also a trapezoid, is

2 + 4

2
· (8 +

√
3− 4−

√
3) = 3 · 4 = 12.

The area of 3, a triangle, is

(2
√

3− 4)(8 +
√

3)

2
= (
√

3− 2)(8 +
√

3) = 8
√

3 + 3− 16− 2
√

3 = 6
√

3− 13.

Therefore, the area of BAM is

A = (16
√

3 + 6)− (7 + 5
√

3)− 12− (6
√

3− 13)

= 16
√

3− 5
√

3− 6
√

3 + 6− 7− 12 + 13

= 5
√

3.

Problem 39B. Proposed by Alexander Monteith-Pistor

For n ∈ N, let S(n) and P (n) denote the sum and product of the digits of n
(respectively). For how many k ∈ N do there exist positive integers n1, ..., nk

satisfying
k∑

i=1

ni = 2021
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k∑
i=1

S(ni) =

k∑
i=1

P (ni)

Problem 40B. Proposed by Vedaant Srivastava

Two identical rows of numbers are written on a chalkboard, each comprised of
the natural numbers from 1 to 10! inclusive. Determine the number of ways to
pick one number from each row such that the product of the two numbers is
divisible by 10!

Problem 42B. Proposed by Andy Kim

Define an L-region of size n as an L-shaped region with two sides of length 2n
and four sides of length n, and define an L-tile to be a tile with the same shape
as an L-region of size 1 (i.e. a 2×2 square with one 1×1 square missing). Prove
that an L-region of size n can be tiled with L-tiles for all positive integers n.

Solution Problem 42B.

We proceed by induction.

Base case: n = 1, 2, 3.

For these cases, the L-regions can be tiled as follows:

Inductive step:

Suppose an L-region of size k is tilable, for some k ≥ 2. Now, we show an
L-region of size k + 2 is tilable. We split the L-region of size k + 2 as follows:
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Since an L-region of size 2 and k are tilable, all that remains to show is that
the two irregular L-shaped regions are tilable. We proceed by casework.

Case 1: n mod 3 = 0

We have n = 3k for some k ∈ Z+, noting that n ≥ 2. Then, the irregular
L-shaped region can be split into 2 sections: a rectangle of dimension 2×n, and
another of dimension 2× 2n. This split looks like the following:

Substituting n = 3k, we have that the two rectangles are of dimension 2×3k
and 2×6k. Since a rectangle of dimension 2×3 is clearly tilable with two L-tiles,
we have that these two rectangles can also be tiled, by attaching the respective
number of 2 × 3 rectangles side by side. So, the irregular L-shaped region can
be tiled, and thus the entire L-region of size k+ 2 can be tiled, for n mod 3 = 0.

Case 2: n mod 3 = 1

We have n = 3k+1 for some k ∈ Z+, noting that n ≥ 2. Then, the irregular
L-shaped region can be split into 2 sections: a rectangle of dimension 2×(n+2),
and another of dimension 2× (2n− 2). This split looks like the following:
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Substituting n = 3k + 1, we have that the two rectangles are of dimension
2 × 3k + 3 and 2 × 6k. These rectangles are again tilable by attaching the
respective number of 2 × 3 rectangles side by side. So, the irregular L-shaped
region can be tiled, and thus the entire L-region of size k + 2 can be tiled, for
n mod 3 = 1.

Case 3: n mod 3 = 2

We have n = 3k + 2 for some k ∈ Z+ ∪ {0}, noting that n ≥ 2. Then,
the irregular L-shaped region can be split into 3 sections: an L-region of size
2 in the corner, a rectangle of dimension 2 × n − 2, and another of dimension
2× 2n− 4. This split looks like the following:
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Substituting n = 3k + 2, we have that the two rectangles are of dimension
2 × 3k and 2 × 6k. So, they are tilable by attaching the respective number of
2× 3 rectangles side by side. Since a L-region of size 2 is tilable, we have that
the irregular L-shaped region can be tiled, and thus the entire L-region of size
k + 2 can be tiled, for n mod 3 = 2.

From all three cases, we have that an L-region of size k + 2 is tilable.

Then, by induction, an L-region of size n is tilable with L-tiles, for all n ∈ Z+.

Problem 49B. Proposed by Cosmina Ghitescu

Solve the equation 2021 + 2x = 7y5z, where x, y, z ∈ N.

Solution Problem 49B

We consider cases.

Case 1: z > 0
We have that 2021 + 2x ≡ 7y5z ≡ 0 (mod 5). Since 2021 + 2x is odd, the units
digit of 2021 + 2x must be 5. Thus, the units digit of 2x is 4. We know that
the units digits of powers of 2 come in repeated cycles (sequence: 2, 4, 8, 6).
We discover that 2x has a units digit of 4 when x ≡ 2 (mod 4). Therefore, x is
even.

Taking the equation mod 3, we have that

2021 + 2x ≡ 2 + (−1)x ≡ 3 ≡ 0 (mod 3).

However, 7y5z is never a multiple of 3. Consequently, there are no solutions for
this case.

Case 2: z = 0
Our equation becomes 2021 + 2x = 7y.

If y = 0, we get that 2021 + 2x = 1, which has no solutions.

If y > 0, we see that 7 | (2021 + 2x). (*)

Let us consider cases, where x = 3k, 3k + 1 or 3k + 2 for k ∈ N.

If k = 0, we get that x = 0, x = 1 or x = 2. None of them lead to a valid
solution since 2022, 2023, and 2025 are not powers of 7.

We now take a look at the cases where k ≥ 1.

Case 2.1 : x = 3k
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We have that

2021 + 2x = 2021 + 8k

= (7 · 288 + 5) + 8k

≡ 5 + (1)k (mod 7)

≡ 6 6≡ 0. (mod 7)

From (*), this case yields no solutions.

Case 2.2 : x = 3k + 2

We have that

2021 + 2x = 2021 + 8k · 4
= (7 · 288 + 5) + 8k · 4
≡ 5 + (1)k · 4 (mod 7)

≡ 9 (mod 7)

≡ 2 6≡ 0. (mod 7)

From (*), this case yields no solutions.

Case 2.3 : x = 3k + 1

We have that

2021 + 2x = 2021 + 8k · 2
= (7 · 288 + 5) + 8k · 2
≡ 5 + (1)k · 2 (mod 7)

≡ 7 (mod 7)

≡ 0. (mod 7)

We find that (*) is satisfied. Now, we have 2021 + 8k · 2 = 7y.

Taking each side mod 8, we get

2021 + 8k · 2 ≡ 5 (mod 8),

7y ≡ (−1)y ≡ 1 or 7 (mod 8).

Since they are not congruent mod 8, we get no solutions.

To conclude, the equation has no solutions in N.

Problem 52B. Proposed by Daisy Sheng

Find the general form for the integer k such that the expression

2n+1 + 5n+2 · 32n+4 · k + (2k + 1) · (47 · 3)n+3

is divisible by 2021 for all positive integers n that are odd multiples of 3. For
reference, 2021 = 43 · 47.
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Solution Problem 52B

Simplifying our expression, we get

2n+1 + (5 · 32)n+2 · k + (2k + 1) · (47 · 3)n+3

= 2n+1 + (45)n+2 · k + (2k + 1) · (47 · 3)n+3.

We know that 2021 = 43 · 47. Because 43 and 47 are relatively prime, we
consider their mods separately.

We see that 45 ≡ 2 (mod 43) and 47 · 3 ≡ 4 · 3 ≡ 12 (mod 43). We would
like to make the residue of 12 smaller, so we try squaring. We get that 122 ≡
144 ≡ 43 · 3 + 15 ≡ 15 (mod 43). This is still large, so we try cubing to get
123 ≡ 122 · 12 ≡ 15 · 12 ≡ 180 ≡ 43 · 4 + 8 ≡ 8 (mod 43). We also note that
12y ≡ 2y (mod 43) when y is a positive integer multiple of 3 because we can
divide the 123 into whole number groups to get 8 (mod 43). Thus, we can
properly apply the cubing as n+ 3 is a multiple of 3.

In mod 43, our expression thus becomes

2n+1 + 45n+2 · k + (2k + 1) · (47 · 3)n+3 ≡ 2n+1 + 2n+2 · k + (2k + 1) · 12n+3 (mod 43)

≡ 2n+1(1 + 2k) + (2k + 1) · (123)
n+3
3

≡ 2n+1(2k + 1) + (2k + 1) · (8)
n+3
3

≡ 2n+1(2k + 1) + (2k + 1) · (23)
n+3
3

≡ 2n+1(2k + 1) + (2k + 1) · (2)n+3

≡ (2k + 1)(2n+1 + 2n+3)

≡ 5 · (2k + 1) · 2n+1.

Because 2, 5 6≡ 0 (mod 43), therefore 2k + 1 ≡ 0 (mod 43) if our expression is
to be divisible by 43. Rearranging, we get that 2k ≡ −1 (mod 43). We easily
identify 22 to be the multiplicative inverse since 2 · 22 = 44. We thus get that
k ≡ −22 ≡ 21 (mod 43).

We now consider the expression mod 47. We know from the factorization given
in the problem that 141 ≡ 0 (mod 47). In addition, n + 2 is odd because n is
odd. We thus get that

2n+1 + 45n+2 · k + (2k + 1) · (47 · 3)n+3 ≡ 2n+1 + (−2)n+2 · k + 0 (mod 47)

≡ 2n+1 − 2n+2 · k
≡ 2n+1(1− 2k).

Because 2 6≡ 0 (mod 47), therefore 1−2k ≡ 0 (mod 47). Solving, we get 2k ≡ 1
(mod 47). We see that 48

2 = 24 is the multiplicative inverse. We therefore get
that k ≡ 24 (mod 47).
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We now solve the system of congruence, k ≡ 21 (mod 43) and k ≡ 24 (mod 47).
We let k = 47b+ 24 (*), for some integer b. Substituting this into the second
congruence, we get

47b+ 24 ≡ 21 (mod 43).

Simplifying gives us 4b ≡ −3 (mod 43). The multiplicative inverse of 4 is 44
4 =

11. Thus, we get b ≡ −33 ≡ 10 (mod 43). We let b = 43a + 10, for some
integer a. Substituting this back into (*), we get k = 47(43a + 10) + 24 =
2021a+ 470 + 24 = 2021a+ 494, for some integer a.

Problem 53B. Proposed by Daisy Sheng

Quadrilateral ABCD is constructed with M as the midpoint of AD and 2AB >
AD. Let the circumcircle of triangle ACD intersect AB at K and BD at N ,
where arc KN = 30◦ and ]ABD = 45◦ (see figure below). If CD2+2AC ·AB =
4AB2 +AC · CD and cos(m(]BAD)) = AB−AC

AD , prove that BM = CM .
*Inspired by a TST Problem for Girls’ Math Team Canada.

Solution Problem 53B

ConnectA andN . Because the length of arcKN is 30◦, we see thatm(]KAN) =
15◦ by the Inscribed Angle Theorem. Thus by Exterior Angle Theorem,

m(]AND) = m(]KAN) +m(]ABD) = 15◦ + 45◦ = 60◦.

Because ]AND and ]ACD both subtend the same arc, therefore

m(]ACD) = m(]AND) = 60◦.
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Because M is the midpoint of AD, therefore CM is a median in triangle ACD.
By Median Theorem, a special case of Stewart’s Theorem, we get that

CM2 =
2AC2 + 2CD2 −AD2

4
.

We are given that

CD2 + 2AC ·AB = 4AB2 +AC · CD.

Applying difference of squares, we get

(CD − 2AB)(CD + 2AB) = AC(CD − 2AB).

We take out a common factor of CD − 2AB to get

(CD − 2AB)(CD + 2AB −AC) = 0.

By Triangle Inequality in triangle ADC, we have that AD + CD > AC. Com-
bining this with 2AB > AD, which is given, we have that

2AB + CD > AD + CD > AC.

Thus, 2AB +CD−AC > 0. Because (CD− 2AB)(CD+ 2AB −AC) = 0 and
CD + 2AB −AC > 0, we see that CD − 2AB = 0. Therefore, CD = 2AB.

I will now present two possible methods to finish the problem.

Solution 1 - Cosine Law in Triangle ABM
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Because M is the midpoint, we see that AD = 2AM . By Cosine Law in Triangle
ABM , we get that

BM2 = AM2 +AB2 − 2AM ·AB · cos(m(]MAB))

= AM2 +AB2 − 2AM ·AB · cos(m(]DAB))

= AM2 +AB2 − 2AM ·AB · AB −AC
AD

= AM2 +AB2 −AB2 +AB ·AC

=
AD2

4
+AB ·AC

=
AD2 + 4AB ·AC

4

=
AD2 + 2CD ·AC

4

By Cosine Law in triangle ADC, we get that

AD2 = AC2 + CD2 − 2AC · CD · cos(m(]ACD))

= AC2 + CD2 − 2AC · CD · cos 60◦

= AC2 + CD2 −AC · CD

This is equivalent to 2AC2 + 2CD2 = 2AD2 + 2AC · CD. We see that

CM2 =
2AC2 + 2CD2 −AD2

4
=
AD2 + 2AC · CD

4
= BM2.

Because CM,BM > 0, we have thus proved that CM = BM .

Solution 2 - Median Theorem in Triangle ABD

Because M is the midpoint, BM is thus the median of triangle ABD. By
Median Theorem in Triangle ABD, we get that

BM2 =
2AB2 + 2BD2 −AD2

4
.

If BM and CM are equal, we must show that 2AB2 + 2BD2 = 2AC2 + 2CD2.
From Cosine Law in Triangle ADC (see Solution 1), we have

AD2 = AC2 + CD2 −AC ·DC.

This is equivalent to 2AD2 + 2AC ·DC = 2AC2 + 2CD2 (*). From Cosine
Law in Triangle ABD, we get

BD2 = AB2 +AD2 − 2AB ·AD · cos(m(]BAD)).

Substituting cos(m(]BAD)) = AB−AC
AD into the above equation, we have that

BD2 = AB2 +AD2 − 2AB ·AD · AB −AC
AD

,
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which becomes

BD2 = AB2 +AD2 − 2AB2 + 2AB ·AC.

We see that

2AB2 + 2BD2 = 2AB2 + 2 · (AB2 +AD2 − 2AB2 + 2AB ·AC)

= 2AB2 + 2 · (AD2 −AB2 + 2AB ·AC)

= 2AD2 + 4AB ·AC
= 2AD2 + 2CD ·AC
= 2AC2 + 2CD2,

with the last equality coming from (*). Thus, we have that BM2 = CM2,
proving that BM = CM .

Problem 54B. Proposed by Max Jiang

Find all functions f : R→ R that satisfy the following property:

Given an ordered pair (x, y) ∈ R2, we have either

f(x)− f(y) = f(x2 − y2)

f(x)f(y) = f(x2y2)

or

f(y) 6= 0

f(x) + f(y) = f(x2 − y2)

f(x)/f(y) = f(x2y2).

Note: it is possible that an ordered pair (x, y), x 6= y satisfies the first set of
conditions while the ordered pair (y, x) satisfies the other set.

Solution Problem 54B

Call the conditions

f(x)− f(y) = f(x2 − y2)

f(x)f(y) = f(x2y2)

(1) and the conditions

f(y) 6= 0

f(x) + f(y) = f(x2 − y2)

f(x)/f(y) = f(x2y2).
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(2).

Consider the ordered pair (0, 0). If we have (2), then

f(0) + f(0) = f(02 − 02)

=⇒ f(0) = 0,

which contradicts that f(y) 6= 0. Thus, we must have (1), so

f(0)− f(0) = f(02 − 02)

=⇒ f(0) = 0.

Now consider (r, r) for some r ∈ R. If we have (2), then

f(r) + f(r) = f(r2 − r2)

=⇒ f(r) = 0,

which contradicts that f(y) 6= 0. Thus, we must have (1), so

f(r)f(r) = f(r2r2)

=⇒ f(r4) = f(r)2 ≥ 0.

Since r ∈ R was arbitrary and r4 ≥ 0,∀r ∈ R, we have f(x) ≥ 0,∀x ≥ 0.

Consider the pair (r,−r) for some r ∈ R. If we have (2), then

f(r) + f(−r) = f(r2 − (−r)2)

=⇒ f(r) = −f(−r)
f(r)/f(−r) = f(r2(−r)2)

=⇒ f(r4) = −1.

However, since r4 ≥ 0 we must have f(r4) ≥ 0. This is a contradiction so we
must have (1). This gives

f(r)− f(−r) = f(r2 − (−r)2)

=⇒ f(r) = f(−r).

In particular, we have f(−r) = f(r) ≥ 0,∀r ≥ 0 so f(x) ≥ 0,∀x ∈ R.

We now prove that if f(b) = 0 for some b 6= 0, we must have f(x) = 0,∀x ∈ R.

For such a b, the ordered pair (a, b) must satisfy (1) for any a ∈ R since f(b) = 0.
Then, we have

f(a2b2) = f(a)f(b)

= 0
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Since b 6= 0, as a ranges over the reals, a2b2 can take on any nonnegative
value. Thus, we have f(x) = 0,∀x ≥ 0. Then, f(x) = f(−x),∀x ≥ 0 so
f(−x) = 0,∀x ≥ 0 as well. This completes the proof.

Consider an ordered pair (a, b), a ≥ b with a, b 6= 0 that satisfies (1). We
have

f(a)− f(b) = f(a2 − b2)

≥ 0

If f(a2 − b2) = 0 we immediately have f(x),∀x ∈ R from our previous result.
Otherwise, f(a)− f(b) > 0 =⇒ f(b)− f(a) < 0.

Then, for the ordered pair (b, a), we see that it cannot satisfy (1) since this
would give f(b2 − a2) = f(b)− f(a) < 0. Thus, it must satisfy (2), which gives

f(b) + f(a) = f(b2 − a2)

= f(a2 − b2) (f(x) = f(−x))

= f(a)− f(b)

=⇒ f(b) = 0

=⇒ f(x) = 0,∀x ∈ R.

Otherwise, we have that (a, b) satisfies (2) for any a, b ∈ R, a, b 6= 0. We have

f(a)/f(b) = f(a2b2).

Then, the pair (b, a) satisfies (2), so we have

f(b)/f(a) = f(b2a2)

= f(a2b2)

= f(a)/f(b)

=⇒ f(a)2 = f(b)2

=⇒ f(a) = f(b) (f(x) ≥ 0,∀x ∈ R)

=⇒ f(a2b2) = 1,∀a, b ∈ R, a, b 6= 0.

As a and b range over the positive reals, a2b2 can take on any positive value,
so we have f(x) = 1,∀x > 0. Then f(x) = f(−x),∀x ∈ R so we have
f(x) = 1,∀x ∈ R.

However, if this holds, for any a, b ∈ R, a, b 6= 0, a 6= b we have

f(a) + f(b) = f(a2 − b2)

1 + 1 = 1

=⇒ 2 = 1,
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which is a contradiction. Thus, this case cannot happen.

Finally, this means that the only function that satisfies the condition is

f(x) = 0,∀x ∈ R.

Problem 56B. Proposed by Alexander Monteith-Pistor

A game is played with white and black pieces and a chessboard (8 by 8). There
is an unlimited number of identical black pieces and identical white pieces. To
obtain a starting position, any number of black pieces are placed on one half
of the board and any number of white pieces are placed on the other half (at
most one piece per square). A piece is called matched if its color is the same of
the square it is on. If a piece is not matched then it is mismatched. How many
starting positions satisfy the following condition

# of matched pieces − # of mismatched pieces = 16

(your answer should be a binomial coefficient)

Problem 58B. Proposed by Aida Dragomirescu

Solve in R the system consisting of the following equations

4∑
i=1

x4i = 4

(
4∑

i=1

x3i

)
− 108 (1)

4∑
i=1

x2i = 6

(
4∑

i=1

xi

)
− 36 (2)

Solution Problem 58B

Multiplying the second equation by 2, we get

2

4∑
i=1

x2i = 12

(
4∑

i=1

xi

)
− 72. (3)

Adding equations (1) and (3) results in:

4∑
i=1

x4i + 2

4∑
i=1

x2i = 4

(
4∑

i=1

x3i

)
− 108 + 12

(
4∑

i=1

xi

)
− 72.

Rearranging the above equation, we have

4∑
i=1

x4i − 4

(
4∑

i=1

x3i

)
+ 2

4∑
i=1

x2i − 12

(
4∑

i=1

xi

)
+ 180 = 0. (4)
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Let f : R→ R where f(x) = x4 − 4x3 + 2x2 − 12x+ 45.

Equation (4) can be rewritten as:

f(x1) + f(x2) + f(x3) + f(x4) = 0.

Factoring f(x) gives us f(x) = (x− 3)
2 (
x2 + 2x+ 5

)
. This can be found

through Rational Root Theorem and polynomial division.

Observation: f(x) ≥ 0, ∀x ∈ R.
We know that the observation is true since (x − 3)2 ≥ 0 via Trivial Inequality
and x2 + 2x+ 5 > 0 since it has a negative discriminant and a positive leading
coefficient.

Equality is reached when x = 3.

So,
∑4

i=1 f(xi) = 0 when x1 = x2 = x3 = x4 = 3 (unique solution).

Problem 59B. Proposed by Alexandru Benescu

Prove that

i)
a5

b3
+
b5

c3
+
c5

a3
≥ ab+ bc+ ca

ii)
ax+y+1

bx
+
bx+y+1

cx
+
cx+y+1

ax
≥ ayb+ byc+ cya

where a, b, c ∈ R+ and x, y ∈ N.

Solution Problem 59B

Part i):

By AM-GM, we know that a4 + b4 + b4 + b4 ≥ 4ab3. Rearranging, we get that

a4 ≥ 4ab3 − 3b4. Dividing both sides by b3 gives us a4

b3 ≥ 4a − 3b. Multiplying
both sides by a results in

a5

b3
≥ 4a2 − 3ab.

Thus,
a5

b3
+
b5

c3
+
c5

a3
≥ 4(a2 + b2 + c2)− 3(ab+ bc+ ca).

We know that (a−b)2 +(b−c)2 +(c−a)2 ≥ 0, which gives us that a2 +b2 +c2 ≥
ab+ bc+ ac. So,

4(a2 + b2 + c2)− 3(ab+ bc+ ca) ≥ ab+ bc+ ca.

Therefore, a5

b3 + b5

c3 + c5

a3 ≥ ab+ bc+ ca.

Part ii):
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We use an approach similar to that in Part i).

By AM-GM, we know that

ax+1 + bx+1 + · · ·+ bx+1︸ ︷︷ ︸
x terms

≥ (x+ 1)abx.

Rearranging the inequality, we get

ax+1 ≥ (x+ 1)abx − xbx+1.

Dividing both sides by bx gives us

ax+1

bx
≥ (x+ 1)a− xb.

Multiplying both sides of the inequality by ay yields

ax+y+1

bx
≥ (x+ 1)ay+1 − xayb.

Thus,

ax+y+1

bx
+
bx+y+1

cx
+
cx+y+1

ax
≥ (x+ 1)(ay+1 + by+1 + cy+1)− x(ayb+ byc+ cya).

We can assume that a ≥ b ≥ c. This also means that ay ≥ by ≥ cy. By
Rearrangement Inequality, we get that

ay+1 + by+1 + cy+1 ≥ ayb+ byc+ cya.

Therefore,

(x+ 1)(ay+1 + by+1 + cy+1)− x(ayb+ byc+ cya) ≥ ayb+ byc+ cya.

Hence, we can conclude that

ax+y+1

bx
+
bx+y+1

cx
+
cx+y+1

ax
≥ ayb+ byc+ cya.

Problem 60B. Proposed by Cosmina Ghitescu

Consider the triangle ABC with sides a > b > c satisfying the condition

sin2A+ sin2B + sin2 C = 2.

Prove that
3
√

3√
2 + 1

(sinA+ sinB + sinC) <
8R2

S
.
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Solution Problem 60B

We know from the Extended Law of Sines that

a

sinA
=

b

sinB
=

c

sinC
= 2R.

Our equality becomes:
a2

4R2
+

b2

4R2
+

c2

4R2
= 2,

which rearranges as
a2 + b2 + c2 = 8R2.

Letting S be the area of the triangle, we have from above that

8R2

S
=
a2 + b2 + c2

S
. (1)

We will now prove that our triangle is right-angled.

Method 1: Original

We know that OH2 = 9R2− (a2 + b2 + c2), where O is the circumcenter and H
is the orthocenter. For our triangle ABC, we have that

OH2 = 9R2 − 8R2 = R2 ⇒ OH = R.

The orthocenter only lies on the circumcircle when triangle ABC is a right-
angled triangle. Since we are given that a > b > c, we conclude that A is the
90 degree angle.

Method 2: Presented by AEs

We can also use trigonometry. We have that

2 = sin2A+ sin2B + sin2 C

= sin2A+ sin2B + sin2(180− (A+B))

= sin2A+ sin2B + sin2(A+B).

Through the Pythagorean Identity and rearranging, we get

sin2(A+B) = cos2A+ cos2B,

which expands to give us

sin2A cos2B + cos2A sin2B + 2 sinA cosB cosA sinB = cos2A+ cos2B.

Factoring and applying Pythagorean Identity once again, we get

2 sinA cosB cosA sinB = cos2A cos2B + cos2B cos2A,
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which simplifies to

sinA cosB cosA sinB = cos2A cos2B.

Rearranging and factoring gives us

0 = sinA cosB cosA sinB − cos2A cos2B

= cosB cosA(sinA sinB − cosA cosB)

= cosB cosA · [− cos(A+B)]

= cosB cosA cos(180− (A+B))

= cosB cosA cosC.

Thus, one of the angles must be 90◦. Since a > b > c, we know that ]A = 90◦.

Since ]A = 90◦, we have that

sinA+ sinB + sinC = 1 + sinB + sin(90−B) = 1 + sinB + cosB.

From Cauchy-Schwarz, we have that

(sinB + cosB)2 < (1 + 1)(sin2B + cos2B)⇒ (sinB + cosB)2 < 2.

Therefore, sinB + cosB <
√

2.

Through this result, we get that

4
√

3√
2 + 1

(sinA+ sinB + sinC) <
4
√

3√
2 + 1

(
√

2 + 1) = 4
√

3.

Weitzenbock’s Inequality states that

4
√

3 ≤ a2 + b2 + c2

S
.

Since a > b > c, we do not have the equality case.

From (1) and the above, we have that

3
√

3√
2 + 1

(sinA+ sinB + sinC) < 4
√

3 <
a2 + b2 + c2

S
=

8R2

S
.

To conclude, 3
√
3√

2+1
(sinA+ sinB + sinC) < 8R2

S .

Footnote by AEs: One Proof of Weitzenbock’s Inequality
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By Heron’s Formula, we have that S =
√
s(s− a)(s− b)(s− c) where s =

a+b+c
2 . Thus,

S =
√
s(s− a)(s− b)(s− c)

=
1

4

√
(a+ b+ c)(b+ c− a)(a+ c− b)(a+ b− c)

=
1

4

√
(a2 + b2 − c2 + 2ab) · [−(a2 + b2 − c2 − 2ab)]

=
1

4

√
2(a2b2 + b2c2 + a2c2)− (a4 + b4 + c4).

Via AM-GM, we have that

a4 + b4

2
+
b4 + c4

2
+
a4 + c4

2
≥ a2b2 + b2c2 + a2c2.

Multiplying both sides by 4, we get that

4(a4 + b4 + c4) ≥ 4(a2b2 + b2c2 + a2c2).

This becomes

(a2 + b2 + c2)2 ≥ 6(a2b2 + b2c2 + a2c2)− 3(a4 + b4 + c4).

Taking the square root of both sides, we have

a2 + b2 + c2 ≥
√

3 ·
√

2(a2b2 + b2c2 + a2c2)− (a4 + b4 + c4) = 4
√

3 · S.

Equality occurs when a = b = c.

Problem 61B. Proposed by Alexandru Benescu

Let a, b and c be the sides of a triangle and R be the radius of its circumscribed
circle. Prove that

(a+ b+ c) · 3
√

(abc)2 < 2R · (ab+ bc+ ca).

Solution Problem 61B

Since ab+ bc+ ca ≥ 3 · 3
√

(abc)2 through AM-GM, we have that

2R · (ab+ bc+ ca) ≥ 2R · 3 3
√

(abc)2.

So, it is enough to prove that

2R · 3 · 3
√

(abc)2 > (a+ b+ c) · 3
√

(abc)2.

We see that a ≤ 2R, b ≤ 2R, c ≤ 2R. Furthermore, it is not possible for a = 2R,
b = 2R and c = 2R at the same time. If it were the case, the center of
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the circumscribed circle would be on the three sides simultaneously, which is
impossible.

Thus, a + b + c < 6R = 2R · 3. Multiplying both sides of the inequality by
3
√

(abc)2, which is positive, we get

(a+ b+ c) · 3
√

(abc)2 < 2R · 3 · 3
√

(abc)2.

Therefore,
(a+ b+ c) · 3

√
(abc)2 < 2R · (ab+ bc+ ca).

Problem 62B. Proposed by Eliza Andreea Radu

If a1, a2, . . . , a2021 ∈ R+ such that
∑2021

i=1 ai > 2021, prove that

a2
2021

1 · 1 · 2 + a2
2021

2 · 2 · 3 + . . .+ a2
2021

2021 · 2021 · 2022 > 4086462.

Problem 63B. Proposed by Alexandru Benescu

Prove that
√

16 + 1

12
+

√
26 + 1

22
+

√
36 + 1

32
+ . . .+

√
20206 + 1

20202
>

√
(20212 · 1010)2 + 20202

2021
.

Problem 64B. Proposed by Pavel Ciurea

In each 1×1 square of an n×n board, the number 1 or −1 is written. We define
a move as the change of the signs of all the numbers on a diagonal. Determine
for which configurations there is a finite series of moves that lead to the product
of the numbers in each row and each column being 1.

Solution Problem 64B

We number the rows, top to bottom, from 1 to n and the columns, left to right,
from 1 to n. We denote li as the product of the numbers in row i and ci as the
product of the numbers in column i, for all i from 1 to n.

We want to show that li · ln−i+1 · ci · cn−i+1 remains constant after each move,
for each i ≤ n+1

2 .

To prove that li · ln−i+1 · ci · cn−i+1 is invariant, it is enough to show that any
diagonal intersects row i, row n− i+ 1, column i, and column n− i+ 1 an even
number of times in total.

We let (a, b) represent the square in row a and column b. If we prove that
each diagonal with one endpoint at square (1, x) and the other at square (x, 1)
intersects row i, row n− i+1, column i, and column n− i+1 an even number of
times in total, then because of the symmetry, each diagonal will intersect row i,
row n− i+ 1, column i, and column n− i+ 1 an even number of times overall.
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If 1 ≤ x < i, then the considered diagonal row i, row n − i + 1, column i, and
column n− i+ 1 a total of 0 times.

If i ≤ x < n− i+ 1, then the diagonal only intersects column i and row i, so it
intersects row i, row n− i+ 1, column i, and column n− i+ 1 twice overall.

If n− i+ 1 ≤ x ≤ n, then the diagonal intersects row i, row n− i+ 1, column
i, and column n− i+ 1, meaning that the diagonal intersects the relevant rows
and columns 4 times overall.

Thus any diagonal intersects row i, row n− i+1, column i, and column n− i+1
an even number of times in total. Thus, li · ln−i+1 · ci · cn−i+1 remains constant
after each move.

If n is odd then we have the case where i = n+1
2 results in row i being the same

as row n− i+ 1 and column i being the same as column n− i+ 1. In this case
using a similar argument to above, we obtain that ln+1

2
· cn+1

2
is invariant.

We want to show that if li · ln−i+1 · ci · cn−i+1 = 1, for ∀i where 1 ≤ i ≤ n+1
2 ,

then there is a series of moves after which the product of the numbers in each
row and each column is 1 and if not, then such series does not exist.

If there is an i, where 1 ≤ i ≤ n+1
2 , such that li · ln−i+1 · ci · cn−i+1 = −1,

because li · ln−i+1 · ci · cn−i+1 remains constant after each move, at least one
of li, ln−i+1,cn−i+1 and ci equals −1 after any series of moves. So, there is no
series of moves that will satisfy the condition.

We now want to show that if li · ln−i+1 · ci · cn−i+1 = 1, for any i where 1 ≤ i ≤
n+1
2 , then there is a series of moves after which the product of the numbers in

each row and each column is 1.

First, we want to show that there is a series of moves after which ci = 1 for ∀i
where 1 ≤ i ≤ n.

Let k be the smallest number such that ck = −1. If such a k does not exist,
then the above statement is obvious. We then consider the diagonal from square
(1, k) to (1 + n − k, n) and apply a move on it. Thus, ci = 1, for ∀i where
1 ≤ i ≤ k. After applying this move, we consider p, the new smallest number
for which cp = −1. We apply a move on the diagonal from square (1, p) to square
(1 + n− p, n). By proceeding inductively, we find that ci = 1 for ∀i, 1 ≤ i ≤ n.

From the fact that li · ln−i+1 · ci · cn−i+1 = 1 for ∀i, 1 ≤ i ≤ n+1
2 and that ci = 1

for ∀i, 1 ≤ i ≤ n⇒ li = ln−i+1 and, if n is odd, we obtain that ln+1
2

= cn+1
2

= 1.

Let k be the largest number for which lk = −1 and 1 ≤ k ≤ n
2 . If such k does not

exist, then li = 1 for ∀i, 1 ≤ i ≤ n and our proof would be finished. We apply
a move on the diagonal from square (k, 1) to square (1, k) and apply a move
on the diagonal from square (n − k + 1, 1) to square (n, k). Since both moves
intersect columns 1 to k, we know that ci = 1 for ∀i, 1 ≤ i ≤ n. Furthermore,
li = 1 for ∀i where k ≤ i ≤ n− k + 1.

By proceeding inductively we obtain that li = ci = 1 for ∀i where 1 ≤ i ≤ n.
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Therefore, if

li · ln−i+1 · ci · cn−i+1 = 1, for ∀i where 1 ≤ i ≤ n+ 1

2
,

then there is a finite series of moves after which the product of the numbers
in each row and each column is 1. If not, then there does not exist a series of
moves that satisfies the problem.

Problem 65B. Proposed by Stefan-Ionel Dumitrescu

If a, b, c ∈ R+ such that abc = a+ b+ c prove that

√
ab+ bc+ ca

(
1

3
+

1

a2
+

1

b2
+

1

c2

)
≥ 4.

Solution Problem 65B

Lemma (Newton’s Inequality)

If a, b, c ∈ R+, then

ab+ ac+ bc ≥
√

3abc(a+ b+ c).

Proof of Newton’s Inequality

By squaring, knowing that a, b, c ∈ R+, we have to prove that∑
cyc

a2b2 + 2
∑
cyc

a2bc ≥ 3
∑
cyc

a2bc,

or: ∑
cyc

a2b2 ≥
∑
cyc

a2bc.

The relationship is known and a2 + b2 + c2 ≥ ab + ac + bc can be proved in
many ways, such as Mean Inequality, Muirhead Theorem, or building squares.
Equality occurs when ab = ac = bc, which means that a = b = c.

Addition from AEs:

One way to prove the inequality is to use Trivial Inequality. Since

1

2
a2(b− c)2 +

1

2
b2(c− a)2 +

1

2
c2(a− b)2 ≥ 0,

we get that a2b2 + b2c2 + c2a2 ≥ a2bc+ ab2c+ abc2 via expansion.



August 18, 2021 Proposed Math Problems Page 41

Proof of Initial Inequality

Through the Lemma, we obtain

ab+ ac+ bc ≥
√

3abc(a+ b+ c).

Since we are given that abc = a+ b+ c, we have that√
3abc(a+ b+ c) =

√
3a2b2c2.

Thus, we get √
ab+ ac+ bc ≥ 4

√
3a2b2c2. (1)

Using GM −HM , we obtain:

4
√

3 · a2 · b2 · c2 ≥ 4
1
3 + 1

a2 + 1
b2 + 1

c2

.

Rearranging the inequality, we get

1

3
+

1

a2
+

1

b2
+

1

c2
≥ 4

4
√

3 · a2 · b2 · c2
. (2)

Multiplying (1) and (2), we get:

√
ab+ ac+ bc

(
1

3
+

1

a2
+

1

b2
+

1

c2

)
≥ 4.

From the Lemma, the condition for equality is a = b = c. From GM −HM , the
condition for equality is

√
3 = a = b = c. From abc = a + b + c, the condition

presented in the problem, we have that a = b = c = abc
3 . Consequently, a = b =

c =
√

3.

Problem 66B. Proposed by Stefan-Ionel Dumitrescu

Consider right-angled triangle ABC with m(]BAC) = 90◦. Extend AC to D,
where D and C are on different sides of AB, such that AB = AD. Similarly,
extend AB to E, where E and B are on different sides of AC, such that AC =
AE. Let M be the midpoint of BD, N be the midpoint of CE, and BN∩CM =
{U}. Take I ∈ (AU), where A and I are on different sides of BC, such that
m(]ICB) = 45◦. Calculate m(]CAI).

Solution Problem 66B

Vecten Point Theorem

For any 4ABC, three squares are constructed externally on the sides: π1 on
BC, π2 on CA, and π3 on AB. If O1, O2 and O3 are the centers of squares
π1, π2, π3, respectively, then AO1, BO2 and CO3 are concurrent at a point V
called the outer Vecten point. Concurrency can be proven using Ceva’s Theorem
and Area Principle.
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Solution Using Vecten Point Theorem

Since AC = AE, AB = AD, and ]CAE = ]BAD = 90◦, we have that

]AEC = ]ACE = ]ABD = ]ADB = 45◦.

Thus, BD is a diagonal of the square constructed externally on AB and CE is
a diagonal of the square constructed externally on AC.

Because M is midpoint of BD and N is the midpoint of CE, we observe that
M is the center of the square build externally on side AB and N is the center
of the square build externally on the side AC.

Consequently, U is the outer Vecten point for 4ABC.

Since I ∈ (AU) and m(]ICB) = 45◦, the angle between one diagonal of a
square and its side, we conclude that I must be the center of the square build
externally on side BC. Thus, m(]IBC) = 45◦ and m(]BIC) = 90◦.

We have that

m(]BAC) +m(]BIC) = 90◦ + 90◦ = 180◦,

meaning that ABIC is a cyclic quadrilateral.

From inscribed angles, we have that m(]CAI) = m(]IBC) = 45◦.
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Problem 67B. Proposed by Stefan-Ionel Dumitrescu

Consider a cube ABCDA′B′C ′D′. Point X lies on face ADD′A′. Point Y lies
on face ABB′A′. Point W is a randomly chosen point on the edges, faces, or
interior of the cube. If Z is the midpoint of XY , find the probability that W is
the midpoint of an AZ.

Problem 68B. Proposed by Vedaant Srivastava

Determine the smallest positive integer M that satisfies the following two con-
ditions:

1. M is a multiple of 2021.

2. For any positive integer n, if nn−1 is divisible by M , then n−1 is divisible
by M .
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