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May 3, 2021

Problems

Problem 30A. Proposed by Alexander Monteith-Pistor

Let A1B1, A2B2, A3B3, A4B4 be four line segments of length 10. For each pair
1 ≤ i < j ≤ 4, the line segments AiBi and AjBj intersect at point Pij . Starting
at A1 and travelling along the four line segments, find the least upper bound for
the distance one has to travel to pass through all 6 points of intersection (P12,
P13, P14, P23, P24, P34).

Problem 33A. Proposed by DC

On circle with diameter AB, take two points C and D and build the intersection
between AC and BD denoted as P. Prove that

BD2 −BC2 = AC × PC +BD ×DP

Solution:

Build the perpendicular PE from P on AB with E on AB.
∆APE ∼ ∆ABC (AA) [m(^AEP ) = m(^ACB) = 90◦ and ^CAB is com-
mon]. We obtain AC × AP = AB × AE. Following the same rationale,
∆BPE ∼ ∆BAD (AA) [m(^BEP ) = m(^BDA) = 90◦ and ^DBA is com-
mon]. We obtain DB ×BP = AB × EB.
From the two above relationships, we obtain AB2 = AC ×AP +BD ×BP .
We now replace the side AP with AC −PC and side BP with BD−DP . The
last relationship becomes:

AB2 = AC(AC − PC) +BD(BD −DP )

Finally:
AB2 = AC2 −AC × PC +BD2 −BD ×DP

and

AC × PC +BD ×DP = BD2 −AB2 +AC2

AC × PC +BD ×DP = BD2 −BC2
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Problem 35A. Proposed by DC

In trapezoid ABCD, the bases are AB=7 cm and CD=3 cm. The circle with
the origin at A and radius AD intersects diagonal AC at M and N. Calculate
the value of the product CM × CN .

Problem 36A. Proposed by Cosmina Ghitescu

Solve the equation
10x2 + 7 = 18x+ 11y

where x ∈ Z and y ∈ N.

Solution:

Let νp(n) denote the exponent of the prime p in the prime factorization of n.

Case 1 : y = 0

10x2 + 7 = 18x+ 1

10x2 − 18x+ 6 = 0

5x2 − 9x+ 3 = 0

By the quadratic formula, it can be verified that there are no solutions for x ∈ Z.

Case 2 : y = 1

10x2 + 7 = 18x+ 11

5x2 − 9x− 2 = 0

(x− 2)(5x+ 1) = 0

Thus the only solution where x ∈ Z is x = 2.

Case 3 : y > 1

10x2 + 7 = 18x+ 11y

10x2 − 18x+ (7− 11y) = 0

The discriminant ∆ can be computed for the above equation:

∆ = 324− 4 · 10(7− 11y)

= 44 + 40 · 11y

= 22 · 11(1 + 10 · 11y−1)

In order to have x ∈ Z, we must have that ∆ is a perfect square, implying that
ν11(∆) is even.
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However,

ν11(∆) = ν11(22 · 11(1 + 10 · 11y−1))

= ν11(11) + ν11(1 + 10 · 11y−1)

= 1 + 0

= 1

Contradiction. (The third line follows as 1 + 10 · 11y−1 ≡ 1 6≡ 0 (mod 11))

Thus the only solution is y = 1 and x = 2.

Problem 37A. Proposed by Cosmina Ghitescu

Remark: The original submission was modified by AE.
Find all x ∈ R that satisfy the equation[

18x− 4

5

]
+

[
36x− 3

10

]
=

2(p− 1)! + 5

p

where p is a prime number.

Solution:

Let y = 18x−4
5 .

We notice that y + 1
2 = 18x−4

5 + 1
2 = 36x−3

10 .

So we can rewrite the equation as

[y] +

[
y +

1

2

]
=

2(p− 1)! + 5

p

[2y] =
2(p− 1)! + 5

p
(Hermite)

From Wilson’s Theorem we have (p− 1)! ≡ −1 (mod p)

As [2y] ∈ Z, we must have

2(p− 1)! + 5 ≡ 0 (mod p)

3 ≡ 0 (mod p) (Wilson)

p = 3

This yields

[2y] =
2(3− 1)! + 5

3
= 3
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Finally, this implies that

3 ≤ 2y < 4 ⇐⇒ 3 ≤ 36x− 8

5
< 4 ⇐⇒ 23

26
≤ x < 7

9

∴ x ∈
[
23
36 ,

7
9

)
Problem 38A. Proposed by Cosmina Ghitescu

Remark: The original submission was modified by AE.

Let ABCDA′B′C ′D′ be a square-based prism with square faces ABCD and
A′B′C ′D′.
Let AB =

√
2AA′.

Consider a point M on the plane (A′B′C ′D′) such that ]AMC ≥ 90◦.

Prove that :

1. The measure of ]AMC can only be 90◦

2. M is the center of the base A′B′C ′D′

Solution:

1. Let AA′ = a,AB = a
√

2.
As 4ABC is isosceles right, we have AC2 = (AB

√
2)2 = 4a2.

Using The Law of Cosines we have

AC2 = AM2 +MC2 − 2AM ·MC · cos]AMC (1)

As 4AA′M,CC ′M are right:

AM2 = AA′2 +A′M ′2 = a2 +A′M2
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MC2 = CC ′2 + C ′M2 = a2 + C ′M2

Because ]AMC ≥ 90◦ ⇒ − cos]AMC = | cos]AMC|.

So we can rewrite (1) as

4a2 = 2a2 +A′M2 + C ′M2 + 2AM ·MC · | cos]AMC|
2a2 = A′M2 + C ′M2 + 2AM ·MC · | cos]AMC| (2)

However, by the inequality 2(x2 + y2) ≥ (x+ y)2, we have

A′M2 +MC ′2 ≥ (A′M +MC ′)2

2
≥ A′C ′2

2
= 2a2 (3)

Where A′M +MC ′ ≥ A′C ′ by the triangle inequality.

From (2) and (3):

2a2 ≥ 2a2 + 2AM ·MC · | cos]AMC|
0 ≥ 2AM ·MC · | cos]AMC|
0 = cos]AMC (AM,MC > 0)

90◦ = ]AMC

2. From a) we have the equalities A′M = MC ′ and A′M +MC ′ = A′C ′ ⇒
A′ −M − C ′ collinear.

∴ M is the center of the base A′B′C ′D′

Alternate solution, by the editors:

Let AA′ = r.
Let O be the midpoint of AC.
Let M be the projection of O onto (A′B′C ′D′). Observe that M is the centre
of base A′B′C ′D′.
Let S1 be a sphere with centre O and diameter AC. Observe that the radius of
S1 is OA = AC/2 = 2r/2 = r = OM .

∴ As OM = r =⇒ M ∈ S1, we have that ]AMC = 90◦.

By projection, for any point M ′ ∈ (A′B′C ′D′) | M ′ 6= M , we have that

OM ′ > OM = r

Thus all points M ′ lie outside S1, implying that ]AM ′C < 90◦.

∴M is the only point satisfying ]AMC ≥ 90◦.
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Problem 39A. Proposed by Max Jiang

In a 2n-player single-elimination tournament, the players are seeded from 1 to
2n, where player i will always win against player j if i < j. In each round, the
remaining players are paired up randomly. Find all pairs of players that are will
be paired up at some point in the tournament no matter how the pairings are
chosen each round.

Solution:

We claim the answer is that only the player 1 and player 2 match must occur.

Note that only player 1 can eliminate player 2 and that player 1 will always
win the tournament since no one can eliminate him. Thus, player 2 must be
eliminated from the tournament, meaning player 1 must be paired with player
2 at some point.

Now, for any other player i with 3 ≤ i ≤ 2n, note that player i could be
paired with player 1 or player 2 in the first round. In this case, they will be
eliminated in the first round and thus not be in any other pairs. Thus, it is
possible that player i not be paired with player j for any given j 6= i, so no pairs
involving a player i ≥ 3 must occur.

Problem 40A. Proposed by Nicholas Sullivan

Let a0 = 1, a1 = 1 and an+1 = 2023an − an−1, for all positive natural numbers
n. Show that for all n ≥ 1:

an+1an−1 − a2n = 2021.

Solution:

This can be proven by induction, where we let Pn be the proposition that
an+1an−1 − a2n = 2021. Let us first consider the base case n = 1. Since a0 = 1,
a1 = 1 and a2 = 2022, then a2a0 − a21 = 2022 − 12 = 2021. Thus, P1 is true,
and the base case is satisfied.

Now, for the induction step, we introduce the assumption that Pk is true, and
show that Pk+1 is also true. First, we take the left-hand side of the expression
for n = k + 1, and simplify:

ak+2ak − a2k+1 = (2021ak+1 − ak)ak − a2k+1

= ak+1(2021ak − ak+1)− a2k
= ak+1ak−1 + a2k.

Since ak+1ak−1 − a2k = 2021 by the induction step, then:

ak+2ak − a2k+1 = 2021.
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Thus, Pk implies Pk+1 for all k ∈ N+. Since P1 is true, then by induction, Pn

is true for all n ∈ N+. Thus, for all n ≥ 1, an+1an−1 − a2n = 2021.

Problem 41A. Proposed by Alexander Monteith-Pistor

Find all functions f : N→ N such that f(1) = 1 and

f(pkm) =

k−1∑
i=0

f(pim)

for all p, k,m ∈ N where p is a prime which does not divide m.

Problem 42A. Proposed by Vedaant Srivastava

Given positive reals a, b, c, prove that

a(a3 + 1)

2b+ 6c
+
b(b3 + 1)

2c+ 6a
+
c(c3 + 1)

2a+ 6b
≥ 1

8
(a3 + b3 + c3 + 3)

Problem 37B. Proposed by Max Jiang

For an even integer n, find the number of ways to tile a 3×n grid with dominoes
in terms of n.

Solution:

Let Ak be the number of ways to tile a 3×2k grid. Then, let Bk be the number
of ways to tile a 3× (2k − 1) grid with a square attached to the left of the top-
or bottom-left square.

Let us consider the ways we can tile the top-left square in a 3× 2k grid.

Case 1: Tile with a vertical domino.

· · ·

· · ·

· · ·

We see that we are left with Bk ways to tile the rest of the grid.

Case 2: Tile with a horizontal domino.
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· · ·

· · ·

· · ·

Then, there are two ways to tile the bottom right square.

Case 2.1: Tile with a horizontal domino.

· · ·

· · ·

· · ·

Then, we must tile the middle leftmost square with another horizontal domino.

· · ·

· · ·

· · ·

Now, there are Ak−1 ways to tile the rest of the grid.

Case 2.2: Tile with a vertical domino.

· · ·

· · ·

· · ·

Then, there are two ways to tile the remaining two squares in the second-
rightmost column. Like
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· · ·

· · ·

· · ·

Leaving us with Bk−1 ways to tile the rest of the grid, or

· · ·

· · ·

· · ·

Leaving us with Ak−1 ways to tile the rest of the grid.

Combining these cases, we see that overall, we have

Ak = Bk +Ak−1 +Bk−1 +Ak−1.

To find a recurrence relation for Bk, first note that there is only one way to tile
the protruding square:

· · ·

· · ·

· · ·

Then, we can tile the remaining two squares in the rightmost column like

· · ·

· · ·

· · ·

Leaving us with Ak−1 ways to tile the rest of the grid, or
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· · ·

· · ·

· · ·

Leaving us with Bk−1 ways to tile the rest of the grid.

Combining these cases, we have

Bk = Ak−1 +Bk−1.

Thus, our series satisfies

Ak = Bk +Ak−1 +Bk−1 +Ak−1 (4)

Bk = Ak−1 +Bk−1 (5)

(2) gives Ak−1 = Bk −Bk−1. Substituting this into (1) gives

(Bk+1 −Bk) = Bk + (Bk −Bk−1) +Bk−1 + (Bk − kn−1)

=⇒ Bk+1 − 4Bk +Bk−1 = 0.

The solution to this linear homogeneous recurrence is

Bk = c1r
k
1 + c2r

k
2

where c1, c2 are real constants and r1, r2 are the roots of the quadratic

x2 − 4x+ 1 = 0.

By the quadratic formula, these roots are 2 ±
√

3. To solve for c1, c2, consider
when k = 1, giving us the unique tiling

and when k = 2, where we can confirm there are 4 tilings. Thus, we must have

c1(2 +
√

3) + c2(2−
√

3) = 1

c1(2 +
√

3)2 + c2(2−
√

3)2 = 4.
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Solving the system yields (c1, c2) = (1/2
√

3,−1/2
√

3), so

Bk =
1

2
√

3
(2 +

√
3)k − 1

2
√

3
(2−

√
3)k.

Then, we have

Ak = Bk+1 −Bk

=

(
1

2
√

3
(2 +

√
3)k+1 − 1

2
√

3
(2−

√
3)k+1

)
−
(

1

2
√

3
(2 +

√
3)k − 1

2
√

3
(2−

√
3)k
)

=
3 +
√

3

6
(2 +

√
3)k +

3−
√

3

6
(2−

√
3)k.

Thus, the number of ways to tile a 3× n grid, where n is even, is

3 +
√

3

6
(2 +

√
3)k +

3−
√

3

6
(2−

√
3)k

where k = n/2.

Problem 38B. Proposed by Nicholas Sullivan

Alice and Bob are playing a game called ’knights of the toroidal table’ on a five-
by-five square ’chessboard’. Each has a knight, which begin in opposite corners
of the board. On each turn, the knight can move as a regular knight, that
is, in an L-shape of two steps in one direction, and one step perpendicularly.
However, if a knight goes over an edge, it reenters on the opposite side, as if the
board were a torus.

Players make turns, and as soon as one player’s knight is captured, or enters
a square previously occupied by another knight, then this player loses the game,
and the other player wins. If Alice moves first, who has the winning strategy,
and what is it?

Solution:

Let us denote squares by counting from the upper-left corner, so that (a, b)
refers to the square in the ath column and bth row, starting from (0, 0) to (4, 4).

If Alice moves first, then Bob has the winning strategy. Since Alice and
Bob’s knights begin in opposite corners of a 5x5 board, we can assume that
Alice’s knight is in the bottom left corner (0, 4), and Bob’s knight is in the top
right corner (4, 0). Bob’s winning strategy is to mirror Alice’s previous move,
reflected across the upper-left to lower-right diagonal. In other words, if Alice
plays (a, b), Bob should play (b, a).

To verify that this is a winning strategy, we need to first verify that it is
always possible for Bob to make this move without losing. First, we recognize
that if Alice plays on a square (a, a), on the diagonal, then Bob can also play
at (a, a), taking Alice’s knight and winning the game. Next, we see that for
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any square (a, b), it has been previously occupied if and only if (b, a) has been
previously occupied, provided that Bob has been playing this strategy. Thus, if
Alice can play at (a, b) for some a 6= b without losing, then Bob can also play
at (b, a) without losing.

Finally, we must ensure that Alice cannot take Bob’s knight when Alice is
at (a, b) and Bob is at (b, a). A knight’s move from (a, b) would take Alice’s
knight to any square (a ± 1, b ± 2) mod 5 or (a ± 2, b ± 1) mod 5. Thus, if
Alice’s knight can take Bob’s knight, then there are two possible cases. In the
first case, b = a± 2 mod 5 and a = b± 1 mod 5, so:

b− a = ±2 = −(±1) mod 5.

Since ±2 6= ±1 mod 5, then this cannot be true. In the second case, b = a± 1
mod 5 and a = b± 2 mod 5, so:

b− a = ±1 = −(±2) mod 5.

Again, since ±2 6= ±1 mod 5, this cannot be true. Thus, Alice cannot take
Bob’s piece in this position.

Since Bob’s move is never losing, then Alice will eventually run out of pre-
viously unoccupied spaces on the board, and will be forced to either move onto
the diagonal and be taken, or a previously occupied square and lose. Thus, Bob
has the winning strategy.

Problem 39B. Proposed by Alexander Monteith-Pistor

For n ∈ N, let S(n) and P (n) denote the sum and product of the digits of n
(respectively). For how many k ∈ N do there exist positive integers n1, ..., nk

satisfying
k∑

i=1

ni = 2021

k∑
i=1

S(ni) =

k∑
i=1

P (ni)

Problem 40B. Proposed by Vedaant Srivastava

Two identical rows of numbers are written on a chalkboard, each comprised of
the natural numbers from 1 to 10! inclusive. Determine the number of ways to
pick one number from each row such that the product of the two numbers is
divisible by 10!



May 3, 2021 Proposed Math Problems Page 13

Problem 41B. Proposed by Nikola Milijevic

The positive integers a1, a2, . . . , an are not greater than 2021, with the property
that lcm(ai, aj) > 2021 for all i, j, i 6= j. Show that:

n∑
i=1

1

ai
< 2

Solution:

We let k1 be the number of ai in the interval ( 2021
2 , 2021], k2 the number of

ai in the interval ( 2021
3 , 20212 ], and so on. Note if we have 2021

m+1 < ai ≤ 2021
m

for some m and i, then ai, 2ai, . . . ,mai are all no greater than 2021. Since
lcm(ai, aj) > 2021, k1 + 2k2 + 3k3 + . . . is the number of distinct integers no
greater than 2021, that are multiples of one of the ai. We have:

2k1 + 3k2 + 4k3 + . . . = (k1 + k2 + k3 + . . . ) + (k1 + 2k2 + 3k3 + . . . )

≤ n+ 2021

≤ 4042

Finding an upper bound for the summation,

n∑
i=1

1

ai
< k1

2

2021
+ k2

3

2021
+ k3

4

2021
+ . . .

=
2k1 + 3k2 + 4k3 + . . .

2021

≤ 4042

2021
= 2

Therefore,
n∑

i=1

1

ai
< 2

Problem 42B. Proposed by Andy Kim

Define an L-region of size n as an L-shaped region with two sides of length 2n
and four sides of length n, and define an L-tile to be a tile with the same shape
as an L-region of size 1 (i.e. a 2×2 square with one 1×1 square missing). Prove
that an L-region of size n can be tiled with L-tiles for all positive integers n.

Problem 43B. Proposed by Andy Kim

For n ∈ Z+∪{0}, let JnK = {i ∈ Z | 1 ≤ i ≤ n}. Also, for a set of positive integers
A, let S(A) be the sum of the elements of A. Find (and prove) a formula for∑

A⊆JnK

∑
B⊆JnK

S(A ∪B)
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Solution:

We claim that ∑
A⊆JnK

∑
B⊆JnK

S(A ∪B) = 3

(
n+ 1

2

)
4n−1

We proceed by induction.

Base case: n = 0

Since J0K = ∅, we have∑
A⊆J0K

∑
B⊆J0K

S(A ∪B) = S(∅ ∪∅) = 0 = 3 ·
(

1

2

)
· 40−1

Inductive step:

Suppose the claim is true for some k ∈ Z+ ∪ {0}.

Note that every subset of Jk + 1K either contains k + 1 or it does not. Fur-
thermore, the subsets do contain k + 1 are in a one-to-one relationship with
subsets of JkK, formed by removing/adding k + 1. So, we have∑

A⊆Jk+1K

∑
B⊆Jk+1K

S(A ∪B)

=
∑

A⊆Jk+1K,
k+1/∈A

∑
B⊆Jk+1K,
k+1/∈A

S(A ∪B) +
∑

A⊆Jk+1K,
k+1∈A

∑
B⊆Jk+1K,
k+1/∈B

S(A ∪B)

+
∑

A⊆Jk+1K,
k+1/∈A

∑
B⊆Jk+1K,
k+1∈B

S(A ∪B) +
∑

A⊆Jk+1K,
k+1∈A

∑
B⊆Jk+1K,
k+1∈B

S(A ∪B)

=
∑

A⊆JkK

∑
B⊆JkK

S(A ∪B) +
∑

A′⊆JkK

∑
B⊆JkK

S((A′ ∪ {k + 1}) ∪B)

+
∑

A⊆JkK

∑
B′⊆JkK

S(A ∪ (B′ ∪ {k + 1})) +
∑

A′⊆JkK

∑
B′⊆JkK

S((A′ ∪ {k + 1}) ∪ (B′ ∪ {k + 1}))

= 4
∑

A⊆JkK

∑
B⊆JkK

S(A ∪B) + 3
∑

A⊆JkK

∑
B⊆JkK

(k + 1)

= 4 · 3
(
k + 1

2

)
4k−1 + 3(k + 1)4k

= 3

(
k + 1

2

)
4k + 3

(
k + 1

1

)
4k

= 3

(
k + 2

2

)
4k
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and so the claim holds for k + 1.

By induction, the claim is true for all n ∈ Z+ ∪ {0}.

Problem 44B. Proposed by DC

Consider triangle ABC with ]ABC = 30◦ and ]ACB = 15◦ and M the mid-
point of the side BC. Build AN, the angle bisector of ]MAC, with N on BC.
Calculate the ratio NC

AB .

Solution:

Build PM the perpendicular bisector with P on AB. ∆BPC is isosceles with
n(]PCB) = 30◦.

AC is angle bisector; consequently AP
AB = CP

CB . We have CP = PB and
AP
AB = PB

CB . We obtain AB = AP ·BC
PB .

From AP
AB = CP

CB we can replace the terms CP with 2PM (from the 30-60-90

∆MPC) and BC with 2BM . We obtain AP
AB = PM

BM and AM angle bisector in
∆BMP . If ]BMA = 45◦ then ]MAC = 30◦ ( ]BMA = ]MAC + ]ACM).
If AN, the angle bisector of ]MAC, then ]NAC = 15◦ and AN ‖ PC ;
consequently NC

BC = AP
PB . We obtain NC = AP ·BC

PB .

Finally, NC
AB = 1

Problem 45B. Proposed by DC

In triangle ABC with ]B = 30◦ prove that sin(A) + cos(C) ≤
√

3.

Solution:

sin(A)+cos(C) = sin(A)+cos(90◦−C) = 2sinA+90◦−C
2 cosA−90

◦+C
2 = 2sin(45◦+

A−C
2 cos 180

◦−B−90◦
2 = 2sin(45◦ + A−C

2 )sinB
2 =
√

3sin(45◦ + A−C
2 ) ≤

√
3.
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